## Synthetic Photochemistry. LXI.1)

# A Total Synthesis of $(\pm)$ -Valeranone, a cis-Decalone Sesquiterpenoid from $Valeriana\ officinalis$ , via an Intramolecular Photocycloaddition

Hitoshi Takeshita,\* Ying-She Cui,† Nobuo Kato, and Akira Mori Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816 †Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816 (Received March 22, 1993)

Starting from the intramolecular [2+2] cycloaddition of 2,6-dimethyl-2-(3,4-dimethyl-3-cyclohexenyl)-4H-1,3-dioxin-4-one,  $(\pm)$ -valeranone, a *cis*-decalone sesquiterpenoid from *Valeriana officinalis*, was totally synthesized in stereoselective fashion.

The stereochemistry of valeranone (1), an interesting rearranged sesquiterpenoid with a cis-decalone framework isolated from several plant sources, including Valeriana officinalis,<sup>2)</sup> was once a focus of dispute. The correct structure of 1 was established by Hikino et al. in the early 1960's,<sup>3)</sup> which was soon confirmed by total syntheses of Marshall et al.<sup>4a)</sup> and Wenkert et al.,<sup>4b)</sup> starting from (-)-carvomenthone and (+)-carvomenthone, respectively. Since then, there have been several other synthetic achievements of 1 motivated by interests concerning the stereochemistry.<sup>4)</sup>

We previously investigated an acetone-sensitized intramolecular photoreaction of 2-alkenyl- and 2-(cyclo-alkenyl)-6-methyl-4H-1,3-dioxin-4-ones to give cage-type [2+2] cycloadducts.<sup>5</sup> Herein, we describe a facile synthesis of ( $\pm$ )-valeranone ( $\mathbf{1}$ )<sup>6</sup> based on this photoreaction.

#### Results and Discussion

The retrosynthetic analysis shown in Scheme 1 demonstrates an attractive feature: i.e., the cage photoproduct possesses the desired trans-relationship between the cis-dimethyl group and a masked acetyl group, which can be converted into the isopropyl group of 1.

Thus, the starting material, 4-acetyl-1,2-dimethyl-1-cyclohexene (2), was prepared by a Diels-Alder reaction of 2,3-dimethyl-1,3-butadiene with 3-buten-2-one.<sup>7)</sup> A subsequent treatment of 2 with diketene in the presence of *p*-tolylsulfonic acid (TsOH)<sup>8)</sup> afforded 2,6-dimethyl-2-(3,4-dimethyl-3-cyclohexenyl)-4*H*-1,3-dioxin-4-ones (3)

Scheme 1.

and 4) as inseparable diastereomers. The irradiation of the mixture  $(3:4=1:1, \text{ from }^{1}\text{H NMR} \text{ spectrometry})$  by means of a 400-W high-pressure mercury lamp in a mixed solution of acetone and acetonitrile (1:9) for 10 h gave isomeric [2+2] cycloadducts, 5 (98% from 3) and 6 (32% from 4). The different rates of conversion suggested not only the stereochemistries of 3 and 4, but also the structures of the cage products, 5 and 6; 5 formed in high yield must be a less-strained compound, and has a suitable structure for performing additional transformations to 1 (Scheme 2).

Subsequently, the major product, **5**, was treated with diisobutylaluminum hydride (DIBAH) and TsOH to form, via a reductive *retro*-aldol fragmentation, followed by Claisen condensation, a pair of *cis*-9-acetyl-1,6-dimethylbicyclo[4.4.0]dec-3-en-2-ones (**7a** and **7b**, 3:2), both as colorless oils. These **7a** and **7b** were not mutually interconvertible, even under acidic conditions, such as with TsOH in benzene at 80 °C, employed for the derivation, or potassium fluoride on Florisil in ethanol at 25 °C for 24 h.<sup>9)</sup> This was rather fortunate, since their dihydro derivatives (**8a** and **8b**) obtained by a catalytic reduction were easily interconvertible on a silica-gel column.

The stereostructures of **7b** and **7a** were differentiated from the nuclear Overhauser effect (NOE); irradiation of the signal at  $\delta=1.16$ , ascribable to one of the angular methyl groups of **7b**, caused a signal enhancement (9.5%) of the proton located at the 1,3-diaxial relationship at  $\delta=2.61$  (tt, J=11.5, 4.0 Hz), the chemical shift of which is ascribable to the methine proton on the carbon bearing the acetyl group. However, **7a** showed no such enhancement for the corresponding proton at

Scheme 2.

Scheme 3.

 $\delta$ =2.43 (tt, J=12.6, 4.0 Hz). The same was true in the cases of **8b** and **8a**; there is a clear NOE, i.e., an 8.0%-enhancement of the signal for the corresponding proton of **8b**, but none for that of **8a**. Figure 1 shows the key features of NOE.

Grignard reactions of **7a** or **7b** with methylmagnesium bromide<sup>10)</sup> afforded a single colorless-oily tertiary alcohol (**9a** or **9b**), which was then quantitatively reduced to a dihydro derivative (**10a** or **10b**).<sup>11)</sup> On the other hand, Grignard reactions of **8a** and **8b** resulted in the formation of the same compound, **10a**, of an unnatural series. Thus, epimerization of **8b** to **8a** under the reaction conditions took place prior to the reaction. Although an attempted methylenation of **8b** under the Wittig reaction conditions gave complicated results, a treatment of **8b** with butyl lithium resulted

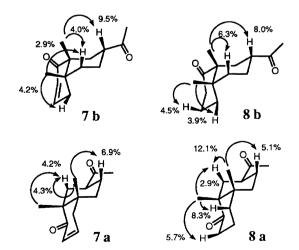



Fig. 1. NOE of 7a, 7b, 8a, and 8b.

in the formation of a tricyclic  $\alpha,\beta$ -unsaturated ketone (11). In its IR spectrum, a carbonyl stretching absorption appeared at 1668 cm<sup>-1</sup>, thus suggesting a typical cyclohexenone moiety. Catalytic hydrogenation of 11 afforded a dihydro derivative (12), whose carbonyl stretching band appeared at 1701 cm<sup>-1</sup>. This should provide additional evidence for the structures of 5 and its transformation products. A treatment of 10b with triethylsilane yielded a saturated ether (13) in good yield. The structure of 13, deduced from an <sup>1</sup>H NMR analysis, confirmed the stereochemistry of 10b and the compounds in the same line (Scheme 3).

Selective dehydration of **10b** to the desired isopropenyl compound **14b** was difficult due to its contamination by the more stable isopropylidene derivative **15**. The best result was realized by a mild treatment of **10b** with methylsulfonyl chloride in the presence of 4-dimethylaminopyridine (DMAP) in dichloromethane at 40 °C, to afford **14b** and **15** (3:2) in 89% yield (Scheme 4). A catalytic hydrogenation of the thus-obtained mixture afforded **1** and 7-epi-valeranone **1a** in a ratio of 4:1. The <sup>1</sup>H and <sup>13</sup>C NMR spectra of **1** and **1a** were identical with that of authentic samples. <sup>4d)</sup>

Due to encountered experimental difficulty concerning the dehydration of **10b**, we turned our attention to utilize compounds belonging to the unnatural series. A treatment of **10a** with 30%-sulfuric acid by heating at 65 °C in methanol for 4 h afforded several products; the major product was a trisubstituted isomer (**16**), which was accompanied by two isomers (**14a** and **15**) (**14a**:**15**:**16**=1:1:4). After all, catalytic hydrogenation of these conformationally mobile keto olefins with various catalysts, e.g., palladium-oncarbon, iridium-black, rhodium-on-alumina, or plat-

Scheme 4.

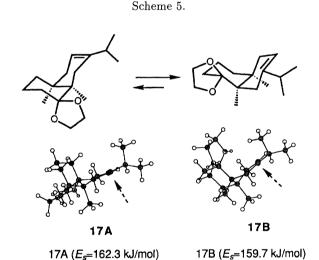



Fig. 2. Strain energies and stereoviews of 17A and 17B.

inum oxide, showed no stereoselectivity; a 1:1-mixture of 1 and 1a was always formed.

In the hope of obtaining the desired dihydro derivative stereoselectively by changing the favored conformation of this *cis*-octalone system, the carbonyl group was converted to a bulky dioxolane group; thus, the mixture (14a, 15, and 16) was treated with 1,2-ethanediol and boron trifluoride-diethyl ether (1/1) in dichloromethane to form an acetal (17).<sup>12)</sup> Subsequent hydrogenation of the acetal on platinum oxide in ethanol, followed by deacetalization with dil hydrochloric acid, furnished 1 and 1a in a ratio of 5:1. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of the synthesized samples were again identical with those recorded in the literature<sup>4d)</sup> (Scheme 5).

An improved formation of 1 by acetalization of the keto group in 17 is of interest. It is well known that the angularly methylated *cis*-decalines have a conformational mobility. This was frequently differentiated

in terms of the steroidal and non-steroidal forms. (13) As depicted in Fig. 2, 17 may also exist in two conformers, 17A (whose dioxolane ring is nearly coplanar with the B-ring) and 17B (whose dioxolane ring is parallel but not coplanar with the B-ring). A direct calculation of the steric energies  $(E_s)$  for 17A and 17B with the Chem3D Plus program<sup>14)</sup> gave the convergent value of 159.7 kJ mol<sup>-1</sup> with the conformation of **17B**. However, the local minimum energy for 17A was obtained with the substitution method to be 162.3 kJ mol<sup>-1</sup>, indicating that 17b is more stable than 17A. Nevertheless, both conformers indicate that the  $\beta$ -side of the molecules is deeply blocked by a cyclohexane ring towards an approach of the catalyst to the double bond to be reduced. As the result, hydrogenation should preferably occur from the  $\alpha$ -side of the molecules. This is consistent to the predominant formation of 1 from 17. Perspective stereoviews of the minimized structures are also illustrated in Fig. 2.

In conclusion, 1 has been synthesized from the cage photocyclisate, 5, with improved stereoselectivity, and the intramolecular photocyclization of 2-alkenyl-6-methyl-4*H*-1,3-dioxin-4-ones has opened a new entry to polysubstituted alicyclic compounds.

### Experimental

The elemental analyses were carried out by Mrs. M. Miyazawa of the Institute of Advanced Material Study, Kyushu University. The mps were measured with a Yanagimoto Micro Melting Point Apparatus and are uncorrected. The NMR spectra were measured by means of the JEOL FX 100 Model and GSX 270H Model spectrometers in CDCl<sub>3</sub> (otherwise specified); the chemical shifts were expressed in the unit of  $\delta$ . The mass spectra were measured with a JEOL 01SG-2 spectrometer. The IR spectra were taken as KBr disks for crystalline compounds, or as liquid films inserted between NaCl plates for oily compounds, using a JASCO IR-A102 spectrometer. The stationary phase for column chromatography was Wakogel C-300, and the eluent was a mixture of ethyl acetate and hexane.

Preparation of 3 and 4. A mixture of diketene (1.5  $cm^3$ ) and  $2^{7)}$  (3.0 g) was heated in the presence of TsOH (10.0 mg) at 90 °C for 10 h. The reaction mixture was diluted with CH2Cl2, washed with dil NaHCO3 and brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. After evaporation of the solvent, the residue was chromatographed on a silica-gel column to give a colorless-oily mixture of **3** and **4** [2.8 g, 61%. <sup>1</sup>H NMR  $\delta = 1.38$  (1H, m), 1.60 (3H, s), 1.61 (3H, s), 1.62 (3H, s),  $1.85 - 2.02 \ (5\mathrm{H, m}), \ 1.98 \ (3\mathrm{H, d}, \ J\!=\!0.7 \ \mathrm{Hz}), \ 2.14 \ (1\mathrm{H, m}),$ and 5.19 (1H, d, J=0.7 Hz). <sup>13</sup>C NMR  $\delta=18.8$ , 19.1, 19.5,  $20.0,\ 23.4,\ 31.7,\ 31.8,\ 42.7,\ 93.8,\ 109.7,\ 124.0,\ 125.6,\ 161.2,$ and 168.6 for one isomer,  $^1\mathrm{H\,NMR}$   $\delta\!=\!1.37$  (1H, s), 1.60 (3H, s), 1.61 (3H, s), 1.63 (3H, s), 1.85-2.02 (5H, m), 1.98 (3H, d, J=0.7 Hz), 2.15 (1H, m), and 5.20 (1H, d, J=0.7)Hz). <sup>13</sup>C NMR  $\delta$ =18.8, 19.1, 19.5, 20.0, 23.2, 31.8, 32.0, 42.6, 93.7, 109.7, 124.1, 125.7, 161.3, and 168.6 for another  $isomer^{15}$ ].

Irradiation of 3 and 4. Formation of 5 and 6. A mixed solution of MeCN and acetone (9:1, 200 cm<sup>3</sup>) of 3 and 4 (490.0 mg) was irradiated with a 400-W high-pressure

Hg lamp through a Pyrex-glass filter under an N<sub>2</sub> stream for 10 h at 0—15 °C. After evaporation of the solvents in vacuo, the residue was chromatographed on a silica-gel column to give 5 [colorless crystals, mp 118—120 °C, 237.6 mg, 98%. Found: C, 71.13; H, 8.54%. Calcd for C<sub>14</sub>H<sub>20</sub>O<sub>3</sub>: C, 71.16; H, 8.53%. <sup>1</sup>H NMR  $\delta$ =1.01 (3H, s), 1.15 (3H, s), 1.29 (3H, s), 1.39 (1H, dd, J=13.0, 2.2 Hz), 1.51 (1H, dt, J=11.4, 3.7 Hz), 1.57 (3H, s), 1.62-1.72 (3H, m), 1.99 (1H, m), 2.46 (1H, m), and 2.67 (1H, s). <sup>13</sup>C NMR  $\delta = 17.4$ , 21.5, 22.2, 27.5, 29.6, 30.4, 38.1, 39.4, 39.8, 52.8, 60.4, 73.6, 105.5, and 170.8. MS m/z (%) 236 (M<sup>+</sup>, 15), 152 (76), 109 (100), and 43 (26). IR  $\nu$  2920, 1733, 1471, 1386, 1295, 1130, 962, 857, and  $802 \text{ cm}^{-1}$ ] and 6 [colorless needles, mp 78—80 °C, 79.2 mg, 32%. Found: C, 71.34; H, 8.55%. Calcd for  $C_{14}H_{20}O_3$ : C, 71.16; H, 8.53%. <sup>1</sup>H NMR  $\delta = 0.98$  (3H, s), 1.09 (3H, s), 1.23 (3H, s), 1.34—1.46 (2H, m), 1.58 (3H, s), 1.62— 1.74 (3H, m), 1.83 (1H, m), 2.31 (1H, m), and 2.88 (1H, d,  $J=1.1~{\rm Hz}$ ). <sup>13</sup>C NMR  $\delta=21.1~(2{\rm C}),~22.0,~22.7,~26.5,~27.0,$ 33.6, 38.6, 39.7, 44.8, 51.4, 80.4, 108.3, and 169.1. MS m/z(%) 236 (M<sup>+</sup>, 16), 152 (80), 109 (100), 85 (27), and 43 (25). IR  $\nu$  2930, 1736, 1387, 1295, 1213, 1142, and 963 cm<sup>-1</sup>].

DIBAH-Reduction Followed by TsOH-Treatment of 5. Formation of 7b and 7a. To 5 (90 mg) dispersed in anhydrous ether (2 cm<sup>3</sup>), DIBAH (1.6 cm<sup>3</sup>, 0.93 mol dm<sup>-3</sup> in hexane) was added drop-by-drop under an N<sub>2</sub> atmosphere, and was stirred at -60 °C for 1 h. The mixture was then treated with EtOAc, diluted with water and filtered through Celite. The filtrate was extracted with ether, washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. After evaporation of the solvents, the thus-obtained residue was dissolved in benzene (20 cm<sup>3</sup>) containing TsOH (5 mg), and refluxed with an equipped Dean-Stark apparatus for 6 h. The mixture was washed with an aqueous NaHCO3 solution and brine, and dried over MgSO<sub>4</sub>. After evaporation of the solvent, the residue was chromatographed on a silica-gel column to give **7b** [a colorless oil, 18.5 mg, 22%. Found: m/z 220.1464 (M<sup>+</sup>). Calcd for  $C_{14}H_{20}O_2$ : M, 220.1464. <sup>1</sup>H NMR  $\delta$ =0.94 (3H, s), 1.16 (3H, s), 1.45 (1H, tdd, J=13.5, 4.0, 1.8 Hz), 1.46 (1H, m), 1.57 (1H, dd, J=11.5, 5.5 Hz), 1.64 (1H, t, t)J=11.5 Hz), 1.70—1.80 (2H, m), 1.88 (1H, dd, J=19.8, 5.5 Hz), 2.16 (3H, s), 2.61 (1H, tt, J = 11.5, 4.0 Hz), 2.81 (1H, dm, J=19.8 Hz), 5.98 (1H, ddd, J=9.9, 2.9, 1.1 Hz), and 6.82 (1H, ddd, J=9.9, 5.5, 2.5 Hz). <sup>13</sup>C NMR  $\delta=16.1, 23.2,$ 24.4, 28.4, 33.6, 34.4, 34.9, 37.4, 44.6, 48.8, 127.5, 146.6, 203.8, and 211.1. MS m/z (%) 220 (M<sup>+</sup>, 45), 152 (38), 123 (22), 109 (100), and 43 (21). IR  $\nu$  2936, 1709, 1668, 1461, 1387, 1248, 1184, 939, and 812 cm<sup>-1</sup>] and **7a** [a colorless oil, 25.5 mg, 30%. Found: m/z 220.1465 (M<sup>+</sup>). Calcd for  $C_{14}H_{20}O_2$ : M, 220.1464. <sup>1</sup>H NMR  $\delta$ =1.03 (3H, s), 1.07 (3H, s), 1.25 (1H, dt, J=13.3, 3.4 Hz), 1.32 (1H, dd, J=13.3, 12.6 Hz), 1.56 (1H, tdd, J=13.3, 12.6, 3.4 Hz), 1.65 (1H, m), 1.78 (1H, td, J=13.3, 4.2 Hz), 2.02 (1H, dd, J=19.9, 5.8 Hz),2.16 (3H, s), 2.28 (1H, ddd, J=13.3, 4.0, 2.2 Hz), 2.43 (1H,tt, J = 12.6, 4.0 Hz), 2.53 (1H, dt, J = 19.9, 2.8 Hz), 5.96 (1H, dd, J=10.1, 2.8 Hz), and 6.75 (1H, ddd, J=10.1, 5.8,2.8 Hz). <sup>13</sup>C NMR  $\delta$ =21.6, 21.8, 23.4, 28.4, 30.6, 34.4, 37.4, 38.6, 47.6, 49.5, 127.6, 146.2, 204.0, and 211.6. MS m/z(%) 220 (M<sup>+</sup>, 36), 123 (100), 109 (92), and 43 (47). IR  $\nu$ 2934, 1712, 1669, 1463, 1387, 1271, 1185, 1122, 984, and 840

Hydrogenation of 7b. Formation of 8b. An EtOAc solution (2 cm<sup>3</sup>) of 7b (100 mg) was hydrogenated with Pd–

C at room temperature. After removing the catalyst by filtration, the filtrate was evaporated and chromatographed on a silica-gel column to give  $\bf 8b$  [a colorless oil, 100 mg, 99%. Found: m/z 222.1619 (M+). Calcd for  $\rm C_{14}H_{22}O_2$ : M, 222.1619.  $^1{\rm H}$  NMR  $\delta{=}0.84$  (3H, s), 1.09 (3H, s), 1.34 (1H, dd,  $J{=}13.2, 3.3$  Hz), 1.45 (1H, dt,  $J{=}13.7, 4.0$  Hz), 1.53—1.67 (1H, m), 1.71—1.80 (4H, m), 1.88 (1H, tt,  $J{=}12.8, 4.0$  Hz), 1.91 (1H, m), 2.17 (3H, s), 2.24 (1H, dm,  $J{=}14.7$  Hz), 2.37 (1H, td,  $J{=}13.2, 5.1$  Hz), 2.60 (1H, tt,  $J{=}13.2, 4.0$  Hz), and 2.66 (1H, ddd,  $J{=}14.7, 12.8, 7.7$  Hz).  $^{13}{\rm C}$  NMR  $\delta{=}16.7, 21.6, 23.4, 24.5, 28.4, 31.9, 34.6, 35.1, 36.9, 38.5, 46.0, 52.2, 211.3, and 216.0. MS <math display="inline">m/z$  (%) 222 (M+, 66), 125 (100), 98 (72), 95 (20), 81 (22), and 43 (53). IR  $\nu$  2942, 1703, 1460, 1374, 1351, 1244, 1152, 1049, 933, and 828 cm  $^{-1}$ ].

Hydrogenation of 7a. Formation of 8a. Similarly, 7a (111.8 g) was reduced to 8a [a colorless oil, 111.7 mg, 99%. Found: m/z 222.1623 (M<sup>+</sup>). Calcd for C<sub>14</sub>H<sub>22</sub>O<sub>2</sub>: M, 222.1619. <sup>1</sup>H NMR δ=1.01 (3H, s), 1.11 (3H, s), 1.24 (1H, t, J=12.8 Hz), 1.19—1.34 (2H, m), 1.47—1.58 (2H, m), 1.73 (1H, m), 1.80—2.06 (3H, m), 2.12 (1H, ddd, J=14.0, 3.7, 1.8 Hz), 2.17 (3H, s), 2.23 (1H, dm, J=15.0 Hz), 2.56 (1H, ddd, J=15.0, 12.8, 8.1 Hz), and 2.68 (1H, tt, J=12.8, 4.0 Hz). <sup>13</sup>C NMR δ=20.8, 22.4, 23.2, 23.5, 28.4, 31.4, 34.4, 34.8, 37.6, 38.9, 47.2, 51.8, 212.0, and 215.8. MS m/z (%) 222 (M<sup>+</sup>, 92), 207 (29), 204 (26), 125 (100), and 43 (36). IR  $\nu$  2942, 1705, 1467, 1387, 1372, 1349, 1266, 1179, 1151, 1054, and 953 cm<sup>-1</sup>].

Treatment of 8b with BuLi. Formation of 11. To an anhydrous THF solution (0.5 cm<sup>3</sup>) of 8b (60 mg), BuLi (0.2 cm<sup>3</sup>, 1.68 mol dm<sup>-3</sup> in hexane) was added drop-by-drop, and was stirred at 50 °C for 10 h. The reaction was quenched by water, and the solvents were evaporated in vacuo. The residue was diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed with brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. The solution was heated in vacuo in order to remove the solvent; the thus-obtained residue was chromatographed on a silica-gel column to give 11 [colorless crystals, mp 120—121 °C, 48 mg, 87%. Found: C, 82.22; H, 9.91%. Calcd for  $C_{14}H_{20}O$ : C, 82.30; H, 9.87%. <sup>1</sup>H NMR  $\delta = 1.04$  (3H, s), 1.14 (1H, m), 1.12 (3H, s), 1.61 (1H, m), 1.70—1.78 (5H, m), 1.84 (2H, m), 1.85 (1H, td, J=13.9, 2.6 Hz), 2.18 (1H, dm, J=11.7 Hz), 2.43 (1H, m), 2.54 (1H, td, J=11.7, 5.5 Hz), and 6.02 (1H, s). <sup>13</sup>C NMR  $\delta=20.9$ , 21.7, 23.4, 26.3, 29.3, 32.6, 34.5, 35.3, 37.8, 40.3, 42.8, 125.8, 172.6, and 202.1. MS m/z (%) 204 (M<sup>+</sup>, 100), 149 (51), 147 (39), 134 (41), and 121 (25). IR  $\nu$  2924, 2860, 1668, 1544,  $1450, 1382, 1276, 1225, 1181, 891, and 870 cm^{-1}$ ].

Catalytic Hydrogenation of 11. An EtOAc solution (0.5 cm<sup>3</sup>) of 11 (20 mg) was hydrogenated with Pd-C. After removing the catalyst by filtration, the filtrate was evaporated and the residue was chromatographed on a silica-gel column to give 12 [colorless crystals, mp 140—143 °C (decomp), 19.8 mg, 98%. Found: m/z 206.1667 (M<sup>+</sup>). Calcd for  $C_{14}H_{22}O$ : M, 206.1670. <sup>1</sup>H NMR  $\delta$ =0.97 (3H, d, J=0.7 Hz), 0.98 (3H, s), 1.11 (2H, m), 1.26 (1H, dm, J=13.9Hz), 1.44 (2H, m), 1.61—1.71 (3H, m), 1.75—1.96 (4H, m), 1.98 (1H, td, J=14.3, 5.1 Hz), 2.41 (2H, d, J=9.9 Hz), and 2.48 (1H, m). <sup>13</sup>C NMR  $\delta$ =16.5, 24.8, 25.2, 25.3, 26.6, 32.1, 34.0, 35.1, 35.7, 38.4, 42.4, 44.8, 46.5, and 216.7. MS m/z(%) 206 (M<sup>+</sup>, 100), 191 (30), 109 (29), 96 (20), 81 (29), and 41 (23). IR  $\nu$  2924, 1701, 1469, 1385, 1279, 1084, and 980  $cm^{-1}$ ].

Grignard Reaction of 7b. Formation of 9b. To

an anhydrous THF solution (5 cm<sup>3</sup>) of 7b (156 mg) was added drop-by-drop, under an N<sub>2</sub> atmosphere, MeMgBr (1.2 cm<sup>3</sup>, 0.94 mol dm<sup>-3</sup> in THF) at 0 °C. The mixture was further stirred at <10°C for 1 h, and quenched with dil NH<sub>4</sub>Cl. After evaporation of THF, the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with NaHCO<sub>3</sub> and brine, and dried (Na<sub>2</sub>SO<sub>4</sub>). The volatile materials were evaporated, and the residue was chromatographed on a silica-gel column to yield **9b** [a colorless oil, 142.3 mg, 85%. Found: m/z $(FAB) 237.1853 (M+1)^{+}$ . Calcd for  $C_{15}H_{25}O_{2}$ : (M+1). 237.1854. <sup>1</sup>H NMR  $\delta$ =0.91 (3H, s), 1.14 (3H, s), 1.16 (3H, s), 1.18 (3H, s), 1.10—1.26 (2H, m), 1.30—1.42 (2H, m), 1.46-1.61 (3H, m), 1.72 (1H, m), 1.82 (1H, dd, J=19.4, 5.9Hz), 2.87 (1H, dt, J=19.4, 2.2 Hz), 5.98 (1H, dd, J=10.3, 2.2 Hz), and 6.83 (1H, ddd, J=10.3, 5.9, 2.2 Hz). <sup>13</sup>C NMR  $\delta = 16.0, 22.2, 24.7, 27.1, 27.6, 34.1, 34.5, 34.7, 37.5, 41.5,$ 49.3, 72.5, 127.6, 146.7, and 204.9. MS m/z (%) 236 (M<sup>+</sup>, 7), 218 (48), 175 (33), 150 (58), 135 (43), 123 (100), 122 (34), 107 (93), 85 (31), 71 (48), and 57 (76). IR  $\nu$  3464, 2938, 1664, 1464, 1387, 1255, 1144, 941, and 812 cm<sup>-1</sup>].

Grignard Reaction of 7a. Formation of 9a. Similarly, 7a (158.2 mg) was converted to 9a [a colorless oil, 102.0 mg, 60%. Found: m/z (FAB) 237.1854 (M+1)<sup>+</sup>. Calcd for C<sub>15</sub>H<sub>25</sub>O<sub>2</sub>: (M+1), 237.1854. <sup>1</sup>H NMR δ=1.00 (3H, s), 1.06 (3H, s), 1.14 (1H, m), 1.19 (6H, s), 1.24—1.36 (3H, m), 1.48—1.61 (2H, m), 1.76 (1H, m), 2.01 (1H, dd, J=19.5, 5.9 Hz), 2.22 (1H, dm, J=13.2 Hz), 2.51 (1H, dt, J=19.5, 2.6 Hz), 5.93 (1H, dd, J=10.3, 2.6 Hz), and 6.72 (1H, ddd, J=10.3, 5.9, 2.6 Hz). <sup>13</sup>C NMR δ=22.0 (2C), 22.3, 26.9, 27.1, 30.1, 35.3, 37.3, 38.5, 44.9, 49.9, 72.5, 127.8, 146.0, and 204.6. MS m/z (%) 218 (34), 175 (30), 150 (20), 135 (21), 123 (100), and 122 (21). IR  $\nu$  3444, 2966, 2910, 1666, 1465, 1387, 1297, 1152, 1120, 1051, 984, 917, and 831 cm<sup>-1</sup>].

Hydrogenation of 9b to 10b. An EtOAc solution (2 cm³) of 9b (78.8 mg) was hydrogenated with Pd–C (5 mg). After the catalyst was filtered off, the filtrate was evaporated and chromatographed on a silica-gel column to afford 10b [a colorless oil, 78.0 mg, 99%. Found: m/z (FAB) 239.2001 (M+1)<sup>+</sup>. Calcd for C<sub>15</sub>H<sub>27</sub>O<sub>2</sub>: (M+1), 239.2011. <sup>1</sup>H NMR δ=0.82 (3H, s), 1.07 (3H, s), 1.03—1.14 (2H, m), 1.19 (6H, s), 1.22—1.30 (2H, m), 1.41 (1H, m), 1.46—1.70 (3H, m), 1.81—1.93 (3H, m), 2.22 (1H, dm, J=15.0 Hz), 2.41 (1H, td, J=13.2, 5.9 Hz), and 2.67 (1H, ddd, J=15.0, 13.2, 7.7 Hz). <sup>13</sup>C NMR δ=16.7, 21.7, 21.9, 24.7, 27.2, 27.3, 32.0, 34.4, 36.0, 36.9, 38.4, 43.1, 52.9, 72.4, and 217.1. MS m/z (%) 238 (M<sup>+</sup>, 1), 220 (91), 205 (56), 177 (51), 149 (58), 135 (46), 125 (100), 107 (79), and 43 (21). IR ν 3452, 2950, 2874, 1696, 1461, 1383, 1251, 1155, 1047, 934, and 732 cm<sup>-1</sup>].

Hydrogenation of 9a to 10a. Similarly, 9a (78.8 mg) was hydrogenated to 10a [a colorless oil, 78.5 mg, 99%. Found: m/z (FAB) 237.1853 (M-1)<sup>+</sup>. Calcd for C<sub>15</sub>H<sub>25</sub>O<sub>2</sub>: (M-1), 237.1854. <sup>1</sup>H NMR δ=0.99 (3H, s), 1.08 (3H, s), 1.19 (3H, s), 1.20 (3H, s), 1.15—1.37 (3H, m), 1.48—1.65 (4H, m), 1.78—2.01 (3H, m), 2.08 (1H, dm, J=13.2 Hz), 2.21 (1H, dm, J=14.7 Hz), and 2.53 (1H, ddd, J=14.7, 13.2, 7.7 Hz). <sup>13</sup>C NMR δ=20.7, 22.4, 22.7, 23.7, 26.8, 27.2, 30.8, 34.8, 35.4, 37.7, 38.7, 44.4, 52.3, 72.6, and 216.1. MS m/z (%) 238 (M<sup>+</sup>, 1), 220 (100), and 125 (50). IR  $\nu$  3460, 2936, 1698, 1470, 1373, 1313, 1149, 1102, 1052, 1013, 954, and 918 cm<sup>-1</sup>].

Chemical Reduction of 10b. Formation of 13. To

a stirred solution of 10b (15 mg), Bu<sub>4</sub>NF (43 mg), and  $Et_3SiH$  (0.026 cm<sup>3</sup>) in  $CH_2Cl_2$  (0.5 cm<sup>3</sup>), was added dropby-drop CF<sub>3</sub>COOH (0.049 cm<sup>3</sup>) at -20 °C. The mixture was stirred for another 1 h at -20 °C and at room temperature overnight, and then quenched with ice water. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with dil NaHCO<sub>3</sub> and brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. After evaporation of the solvent, the residue was chromatographed on a silica-gel column to afford 13 [a colorless oil, 9.6 mg, 69%. Found: m/z222.2006 (M<sup>+</sup>). Calcd for C<sub>15</sub>H<sub>26</sub>O: M, 222.1984. <sup>1</sup>H NMR  $\delta = 0.76$  (3H, s), 0.87 (3H, d, J = 0.7 Hz), 0.78—0.92 (2H, m), 1.02 (1H, dm, J=13.2 Hz), 1.24 (3H, s), 1.26 (3H, s), 1.27—1.37 (2H, m), 1.44—1.75 (5H, m), 1.80—1.98 (2H, m), 2.59 (1H, td, J=13.6, 5.5 Hz), and 3.44 (1H, t, J=2.9 Hz).  $^{13}$ C NMR  $\delta = 16.9$ , 22.3, 24.5, 24.7, 25.4, 27.6, 27.9, 31.4, 33.9, 34.5, 34.8, 35.4, 37.0, 74.3, and 75.8. MS m/z (%) 222 (M<sup>+</sup>, 5), 85 (39), 83 (26), 71 (57), 57 (100), and 43 (20). IR  $\nu$  3432, 2926, 1647, 1385, 1261, 1032, and 806 cm<sup>-1</sup>].

Dehydration of 10b Followed by Catalytic Hydrogenation to 1 and 1a. a) An HMPA (0.1 cm<sup>3</sup>) solution of 10b (25.0 mg) was heated at 220  $^{\circ}$ C for 1 h under an  $N_2$ atmosphere. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed with brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated and the residue was chromatographed on an alumina column to give a mixture of olefins (14b:15=3:2, 9.9 mg, 45%). The above-mentioned olefin mixture (9.9 mg) was dissolved in EtOAc and hydrogenated with PtO2 under atmospheric pressure at room temperature to give 1 [a colorless oil. <sup>1</sup>H NMR  $\delta$ =0.81 (3H, s), 0.86 (3H, d, J=6.6 Hz), 0.87 (3H, d, J=6.6 Hz), 1.06 (3H, s), 1.15-2.45 (13H, m),and 2.66 (1H, ddd, J=14.7, 13.2, 8.1 Hz). <sup>13</sup>C NMR  $\delta=16.7$ , 19.7, 19.9, 21.7, 24.6, 24.8, 32.0, 32.9, 36.2, 37.0, 37.4, 38.4, 38.6, 53.1, and 217.4. (lit,  $^{4d}$ ) <sup>1</sup>H NMR  $\delta$ =0.81 (3H, s), 0.86 (6H, d), 1.06 (3H, s), and 1.15—2.45 (14H, m). <sup>13</sup>C NMR  $\delta = 16.8, 19.8, 20.0, 21.8, 24.7, 24.9, 32.1, 32.9, 36.2, 37.0,$ 37.5, 38.5, 38.6, 53.1, and 217.2)] and 1a [a colorless oil. <sup>1</sup>H NMR  $\delta = 0.85$  (3H, d, J = 6.6 Hz), 0.90 (3H, d, J = 6.6Hz), 0.98 (3H, s), 1.05 (3H, s), and 1.00-2.60 (14H, m).  $^{13}$ C NMR  $\delta = 19.4$ , 20.0, 20.6, 22.7, 23.8, 24.5, 32.9, 33.9, 35.0, 35.5, 37.7, 38.8, 39.5, 52.3, and 216.2. (lit, 4d) <sup>1</sup>H NMR  $\delta = 0.85$  (3H, d, J = 6.6 Hz), 0.89 (3H, d, J = 6.6 Hz), 0.97 (3H, s), 1.05 (3H, s), and 1.00—2.60 (14H, m). <sup>13</sup>C NMR  $\delta = 19.4, 20.1, 20.7, 22.8, 23.8, 24.6, 32.9, 33.9, 35.0, 35.5,$ 37.8, 38.8, 39.5, 52.4, and 216.0)] (9.9 mg, 99%) in a ratio of 4:1.

b) To a  $\mathrm{CH_2Cl_2}$  (5 cm³) solution of  $\mathbf{10b}$  (17.0 mg) and DMAP (90.0 mg), MeSO<sub>2</sub>Cl (0.01 cm³) was added drop-by-drop at 0 °C, and refluxed for 30 min. After being diluted with H<sub>2</sub>O, the mixture was extracted with  $\mathrm{CH_2Cl_2}$ , washed with brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. After removing the volatile material, the residue was chromatographed on an alumina column to give a mixture of olefins ( $\mathbf{14b}:\mathbf{15}=3:2$ , 14.0 mg, 89%), which was hydrogenated in the presence of PtO<sub>2</sub> to afford  $\mathbf{1}$  and  $\mathbf{1a}$  (4:1, 14.0 mg, 99%).

Grignard Reaction of 8a. To an anhydrous THF solution (1 cm<sup>3</sup>) of 8a (50.0 mg), MeMgBr (0.3 cm<sup>3</sup>, 0.94 mol dm<sup>-3</sup> in THF) was added drop-by-drop at 0 °C under an  $N_2$  atmosphere, and was further stirred at <10°C for 1 h. The mixture was then quenched with dil NH<sub>4</sub>Cl and the solvent was evaporated. The thus-obtained residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with NaHCO<sub>3</sub> and brine successively, and dried (Na<sub>2</sub>SO<sub>4</sub>). After the solvent was

evaporated, the residue was chromatographed on a silica-gel column to give **10a** (40.9 mg, 78%).

Grignard Reaction of 8b to form 10a. Similarly, 8b (13.4 mg) was also treated with MeMgBr to form 10a (7.1 mg, 56%).

**Dehydration of 10a.** To a stirred solution of **10a** (26 mg) in MeOH (1 cm<sup>3</sup>) was added 30%-H<sub>2</sub>SO<sub>4</sub> (0.5 cm<sup>3</sup>), which was refluxed for 4 h. The mixture was diluted with water, extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with saturated NaHCO<sub>3</sub> and brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent gave a mixture of olefins (**14a**:**15**:**16**=1:1:4, 18.9 mg, 79%) and **10a** (4.9 mg, 19%) recovered.

Acetal Formation from the Mixture of 14a, 15, and 16. To a stirred benzene solution of a mixture of the above olefins (14a:15:16=1:1:4, 15 mg) and ethylene glycol ( $0.15 \text{ cm}^3$ ) in  $\text{CH}_2\text{Cl}_2$  ( $0.5 \text{ cm}^3$ ) was added drop-by-drop BF<sub>3</sub>-etherate at 0 °C, which was refluxed for 4 h. The reaction mixture was diluted with  $\text{CH}_2\text{Cl}_2$ , washed with dil NaHCO<sub>3</sub> and brine, and then dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent and purification by chromatography on an alumina column, gave an acetal 17 [a colorless oil, 17.1 mg, 95%. <sup>1</sup>H NMR ( $\text{C}_6\text{D}_6$ )  $\delta$ =1.04 (3H, d, J=7.0 Hz), 1.05 (3H, d, J=6.6 Hz), 1.06 (3H, s), 1.25 (3H, s), 1.02—2.25 (11H, m), 3.50 (4H, m), and 5.37 (1H, m)].

Hydrogenation of 17. Selective Formation of 1. The above 17 (15.0 mg) was hydrogenated with PtO<sub>2</sub> (< 1 mg) under hydrogen atmosphere for 5 d. The mixture was dissolved in a 1:1-mixture of MeOH (0.5 cm<sup>3</sup>) and a 3 mol dm<sup>-3</sup> HCl solution (0.5 cm<sup>3</sup>), and then stirred at room temperature for 30 min. After removing MeOH, the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub>, washed with dil NaHCO<sub>3</sub> and brine, and dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent afforded 1 and 1a (5:1, 12.4 mg, 98%).

#### References

1) Part LX: H. Takeshita, Y. -S. Cui, N. Kato, A. Mori,

- and Y. Nagano, Bull. Chem. Soc. Jpn., 65, 2940 (1992).
- 2) A. Stoll, E. Seebeck, and D. Stauffacher, *Helv. Chim. Acta*, **40**, 1205 (1957).
- 3) H. Hikino, Y. Hikino, and T. Takemoto, *Chem. Pharm. Bull.*, **13**, 1404 (1965).
- 4) For former syntheses of 1, see: a) J. A. Marchall, W. I. Fanta, and G. L. Bundy, J. Org. Chem., 33, 3913 (1968); b) E. Wenkert, D. A. Berges, and N. F. Golob, J. Am. Chem. Soc., 100, 1263 (1978); c) D. K. Banerjee and V. B. Anjadi, Indian J. Chem., 11, 511 (1973); d) G. D. Vite and T. A. Spencer, J. Org. Chem., 53, 2560 (1988); e) P. G. Sammes, L. J. Street, and R. J. Whitby, J. Chem. Soc., Perkin Trans. 1, 1986, 281.
- 5) H. Takeshita, Y. -S. Cui, N. Kato, A. Mori, and Y. Nagano, *Chem. Express*, 7, 397 (1992).
- 6) A part of the results was preliminarily reported: H. Takeshita, Y.-S. Cui, N. Kato, and A. Mori, *Chem. Express*, **8**, 169 (1993).
- 7) A. A. Petrov, J. Gen. Chem. USSR, (Engl. Transl.), 11, 309 (1941).
- 8) S. W. Baldwin and J. M. Wilkinson, J. Am. Chem. Soc., **102**, 3634 (1980).
- 9) N. Kato, S. Tanaka, and H. Takeshita, *Bull. Chem. Soc. Jpn.*, **61**, 3231 (1988).
- 10) Purchased from Aldrich Chemical Co., Inc., Japan.
- 11) Ref. 4c has described a conversion of **10a** into **1** and 7-epi-valeranone (**1a**) (**1**:**1a**=**1**:4). Therefore, the present acquisition of **10a** constitutes a formal total synthesis of **1**.
- 12) During the acetal formation, isomerization of olefins occurred to accumulate 16, and as the result, only 17 was identified among the products.
- 13) T. Nozoe, Y. S. Chen, and T. Toda, *Tetrahedron Lett.*, **1966**, 3663; C. Beeson and T. A. Dix, *J. Org. Chem.*, **57**, 4386 (1992).
- 14) Lisenced from Cambridge Science Computing, Inc.
- 15) The assignments are merely tentative.